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Introduction

A deep learning-based non-Newtonian hydrodynamic model,
which retains a multi-scaled nature by mapping the polymer
configurations into a set of symmetry-preserving macro-
scale features.

Our goals are:

® Faithfully inherit the micro-scale interactions beyond
empirical models.

® Automatically capture specific molecular structural
mechanics without human intervention.

® Strictly preserve the frame indifference constraints.

® Only utilize discrete samples for model training.

Motivations

® Macro-model: hydrodynamic equations for
non-Newtonian fluid.
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® Physical constraint: frame-indifference condition.
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® Limits of existing empirical models:
O Molecular fidelity: heuristic form of G(c) I

. . . . . D
O Empirical formulation: non-unique choices of D—z

O Generalization ability: heterogeneous molecule
structural micro-mechanics

® Machine-learning difficulties:
[0 Retain physical interpretation -
O Require error-prone time-series samples Q(t +dn)
O Preserve symmetry constraints

c(t + dt) ¢(t + di)

Model Construction from Micro Description
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® Main idea 1: seek explicit micro-macro encoders to
best approximate the macro-scale features.
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r is the bond which is rotational-symmetric, r* is the length and the
distance of bonds which is rotational-invariant. Then we can construct

the symmetry-preserving micro-macro encoder by
N—-1

C, — <bz-(r)>, bz = fZ-fZ-T, fz' = gz(r*) Z wi; Ty, 1 S ? S n,

where w;; and g; will be represented by deep neural networks.

Remark:

O{c;} are not standard moments to approximate the
polymer configuration density.

O{b;} are jointly learned for the best approximation of G(-)
and H(-).

O{c,;} strictly preserve symmetry constraints
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® Main idea 2: discrete-sample-based learning with
molecular fidelity. The explicit form of micro-macro
correspondence enables us to derive their evolution from
the Fokker-Planck equation
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Dumbbell Example:

bi(r) = £i(r)f’ (r), £i(r) = gi(|x|)r,
s.t. bi(Qr) = Qb;(r)Q’, fi(Qr) = Qfi(r)

Remark:

O A - generalized Rouse matrix encodes various molecule structures

O V - potential function encodes micro-scale intramolecular interactions

O The LHS provides a generalized objective tensor derivative with clear
micro-scale physical interpretation.

DeePN<Z Model

® DeePN?: A machine-learning-based model of non-
Newtonian fluids.
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G H,; H,; b;, € are represented by DNNSs that rigorously
preserve rotational symmetry and are jointly learned by:

Remark: DeePN?2 achieves the following innovations
® Does Not:

OLearn constitutive dynamics using timeseries samples.
ORely on empirical choices of the constitutive closures.

O Seek the direct approximation of the high-dimensional
PDF.

® Does:

OBe reliable: systematically pass the micro-scale
heterogenous molecular structures and interactions.

ORetain physical interpretation: provide a generalized
form of the objective tensor derivative.

ORespect constraints: strictly preserve the rotational
frame-indifference symmetries.

Numerical Example: f“"f'
Reverse Poiseuille Flow
® Dumbbell: Empirical form of Ux i

objective tensor derivative is limited.
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® Multi-bead molecules (N=7): our model can capture the
different flow responses arising from the different molecule structures
without human intervention.
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Hysteresis loop: represents the strong memory effect that can not
be captured by empirical (Hookean, FENE-P, etc.) models.
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Numerical Example: 2D Green-Taylor flow

Vortex generated by:
2w 2Ty 2T, . 21y
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® Velocity fields :
chain
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® Stress field:

100 —

75

=50

25

stress evolution at different point

x=49, y=49

® Effects of heterogenous molecular structure: the
chain-shaped molecule suspension exhibits larger
polymer stress variation, also reflected in the larger
hysteresis loop area. Such difference is also consistent
with the more pronounced asymmetric velocity field.

Future Work

Use the generalized Langevin equation with state-
dependent memory formulationl?! into the friction term and
derive a better continuous dynamics in DeePN? model.
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