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Remark: DeePN2 achieves the following innovations

⚫Does Not:

Learn constitutive dynamics using timeseries samples.

Rely on empirical choices of the constitutive closures.

Seek the direct approximation of the high-dimensional 

PDF.

⚫Does:

Be reliable: systematically pass the micro-scale 

heterogenous molecular structures and interactions.

Retain physical interpretation: provide a generalized 

form of the objective tensor derivative.

Respect constraints: strictly preserve the rotational 

frame-indifference symmetries.
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Introduction

A deep learning-based non-Newtonian hydrodynamic model, 

which retains a multi-scaled nature by mapping the polymer 

configurations into a set of symmetry-preserving macro-

scale features. 

Our goals are:
⚫ Faithfully inherit the micro-scale interactions beyond 

empirical models.

⚫Automatically capture specific molecular structural 

mechanics without human intervention. 

⚫Strictly preserve the frame indifference constraints.

⚫Only utilize discrete samples for model training.

Motivations

⚫ Macro-model: hydrodynamic equations for 

non-Newtonian fluid.

𝒓 is the bond which is rotational-symmetric, 𝒓∗ is the length and the 

distance of bonds which is rotational-invariant. Then we can construct 

the symmetry-preserving micro-macro encoder by

where  𝑤𝑖𝑗 and g𝑖 will be represented by deep neural networks.

Remark:
 𝒄𝑖  are not standard moments to approximate the 

polymer configuration density.

{b𝑖} are jointly learned for the best approximation of G(∙) 

and H(∙). 

 𝒄𝑖  strictly preserve symmetry constraints

Dumbbell Example:

⚫ Limits of existing empirical models: 
Molecular fidelity:  heuristic form of G(c)

 Empirical formulation: non-unique choices of 
𝒟𝒄

𝒟𝑡

 Generalization ability: heterogeneous molecule 

structural micro-mechanics

⚫ Machine-learning difficulties: 
 Retain physical interpretation

 Require error-prone time-series samples

 Preserve symmetry constraints

⚫Dumbbell: Empirical form of 

objective tensor derivative is limited.

Model Construction from Micro Description

⚫Main idea 1: seek explicit micro-macro encoders to 

best approximate the macro-scale features.

⚫Main idea 2: discrete-sample-based learning with 

molecular fidelity. The explicit form of micro-macro 

correspondence enables us to derive their evolution from 

the Fokker-Planck equation

Remark:

 A - generalized Rouse matrix encodes various molecule structures

 V - potential function encodes micro-scale intramolecular interactions

 The LHS provides a generalized objective tensor derivative with clear 

micro-scale physical interpretation.

⚫ Physical constraint: frame-indifference condition.

G, H1,𝑖 , H2,𝑖 , b𝑖 , 𝓔𝑖 are represented by DNNs that rigorously 

preserve rotational symmetry and are jointly learned by:

Numerical Example: 

Reverse Poiseuille Flow

⚫Multi-bead molecules (N=7): our model can capture the 

different flow responses arising from the different molecule structures 

without human intervention.

DeePN2 Model

⚫DeePN2: A machine-learning-based model of non-

Newtonian fluids.

Hysteresis loop: represents the strong memory effect that can not 

be captured by empirical (Hookean, FENE-P, etc.) models.

Numerical Example: 2D Green-Taylor flow

Vortex generated by:

Micro-model
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velocity evolution                                         stress evolution

𝒚 = 𝟒𝟗                                                              𝒙 = 𝟒𝟗,   𝒚 = 𝟒𝟗

stress evolution at different point 

𝒙 = 𝟒𝟗,   𝒚 = 𝟑𝟓                                                           𝒙 = 𝟒𝟗,   𝒚 = 𝟒𝟗

⚫ Stress field:

⚫ Velocity fields :

⚫Effects of heterogenous molecular structure: the 

chain-shaped molecule suspension exhibits larger 

polymer stress variation, also reflected in the larger 

hysteresis loop area. Such difference is also consistent 

with the more pronounced asymmetric velocity field.
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Future Work

Use the generalized Langevin equation with state-

dependent memory formulation[2] into the friction term and 

derive a better continuous dynamics in DeePN2 model.
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